Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antimicrob Agents Chemother ; 67(3): e0151422, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2269374

ABSTRACT

Anti-SARS-CoV-2 immunoglobulin (human) investigational product (COVID-HIGIV) is a purified immunoglobulin preparation containing SARS-CoV-2 polyclonal antibodies. This single-center clinical trial aimed to characterize the safety and pharmacokinetics of COVID-HIGIV in healthy, adult volunteers. Participants were enrolled to receive one of three doses of COVID-HIGIV (100, 200, 400 mg/kg) or placebo in a 2:2:2:1 randomization scheme. Between 24 December 2020 and 27 July 2021, 28 participants met eligibility and were randomized with 27 of these 28 (96.4%) being administered either COVID-HIGIV (n = 23) or placebo (n = 4). Only one SAE was observed, and it occurred in the placebo group. A total of 18 out of 27 participants (66.7%) reported 50 adverse events (AEs) overall. All COVID-HIGIV-related adverse events were mild or moderate in severity and transient. The most frequent AEs (>5% of participants) reported in the safety population were headache (n = 6, 22.2%), chills (n = 3, 11.1%), increased bilirubin (n = 2, 7.4%), muscle spasms (n = 2, 7.4%), seasonal allergies (n = 2, 7.4%), pyrexia (n = 2, 7.4%), and oropharyngeal pain (n = 2, 7.4%). Using the SARS-CoV-2 binding IgG immunoassay (n = 22, specific for pharmacokinetics), the geometric means of Cmax (AU/mL) for the three COVID-HIGIV dose levels (low to high) were 7.69, 17.02, and 33.27 AU/mL; the average values of Tmax were 7.09, 7.93, and 5.36 h, respectively. The half-life of COVID-HIGIV per dose level was 24 d (583 h), 31 d (753 h), and 26 d (619 h) for the 100 mg/kg, 200 mg/kg, and 400 mg/kg groups, respectively. The safety and pharmacokinetics of COVID-HIGIV support its development as a single-dose regimen for postexposure prophylaxis or treatment of COVID-19.


Subject(s)
COVID-19 , Humans , Adult , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Administration, Intravenous , Double-Blind Method
2.
Microbiol Spectr ; 10(2): e0216721, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1784773

ABSTRACT

The SARS-CoV-2 coronavirus, which causes COVID-19, uses a viral surface spike protein for host cell entry and the human cell-surface transmembrane serine protease, TMPRSS2, to process the spike protein. Camostat mesylate, an orally available and clinically used serine protease inhibitor, inhibits TMPRSS2, supporting clinical trials to investigate its use in COVID-19. A one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) model for camostat and the active metabolite FOY-251 was developed, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. The model predicts that 95% inhibition of TMPRSS2 is required for 50% inhibition of viral entry efficiency. For camostat 200 mg dosed four times daily, 90% inhibition of TMPRSS2 is predicted to occur but with only about 40% viral entry inhibition. For 3-fold higher camostat dosing, marginal improvement of viral entry rate inhibition, up to 54%, is predicted. Because respiratory tract viral load may be associated with negative outcome, even modestly reducing viral entry and respiratory tract viral load may reduce disease progression. This modeling also supports medicinal chemistry approaches to enhancing PK/PD and potency of the camostat molecule. IMPORTANCE Strategies to repurpose already-approved drugs for the treatment of COVID-19 has been attractive since the beginning of the pandemic. Camostat mesylate, a serine protease inhibitor approved in Japan for the treatment of acute exacerbations of chronic pancreatitis, inhibits TMPRSS1, a host cell surface serine protease essential for SARS-CoV-2 viral entry. In vitro experiments provided data suggesting that camostat might be effective in the treatment of COVID-19. Multiple clinical trials were planned to test the hypothesis that camostat would be beneficial for treating COVID-19 (for example, clinicaltrials.gov, NCT04353284). The present work used a one-compartment pharmacokinetic (PK)/pharmacodynamic (PD) mathematical model for camostat and the active metabolite FOY-251, incorporating TMPRSS2 reversible covalent inhibition by FOY-251, and empirical equations linking TMPRSS2 inhibition of SARS-CoV-2 cell entry. This work is valuable to guide further development of camostat mesylate and possible medicinal chemistry derivatives for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Clinical Studies as Topic , Esters , Guanidines , Humans , Serine Proteases , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL